

Max. Marks: 100 Date: 06.11.2022

ABHIMANYU BATCH PHYSICS: REVISION TEST-1 (SET A)

Topics: Ray Optics, Circular Motion and Gravitation

		1 Op1	cs: Kay	y Optics, Circuia	r Mou	on and Gravitation	n	
1.		n light wave suffers is equal to	reflection	on at the interface fi	rom air 1	to glass, then the cha	ange in j	phase of the reflected
	(a)	zero	(b)	$\frac{\pi}{2}$	(c)	π	(d)	2π
2.				ii-convex lenses of for $a = 4/3$). The focal lenses			ontact.	The space between the
	(a)	f/3	(b)	f	(c)	$\frac{4f}{3}$	(d)	$\frac{3f}{4}$
3		_				normal incidence) is a contract the contract of the contract o		ep when viewed from
	(a)	8	(b)	10	(c)	12	(d)	16
4.	incre	· ·		• •				his eyes. In order to
	(a)	convex, + 2.25 D	(b)	concave, – 0.25 D	(c)	concave, – 0.2 D	(d)	convex, + 0.15 D
				Space for Ro	ugh Wo	nlz		
				Space for No	ugn VV U	117		

5. Match the corresponding entries of Column I with Column II. [Where, m is the magnification produced by the mirror]

(a)

(b)

(c)

(d)

Column I

A. m = -2

B. m = -1/2

C. m = +2

D. m = + 1/2

(a) $A \rightarrow a$ and $c, B \rightarrow a$ and $d, C \rightarrow a$ and $b, D \rightarrow c$ and d

(b) $A \rightarrow a$ and d, $B \rightarrow b$ and c, $C \rightarrow b$ and d, $D \rightarrow b$ and c

(c) $A \rightarrow c$ and d, $B \rightarrow b$ and d, $C \rightarrow b$ and c, $D \rightarrow a$ and d

(d) $A \rightarrow b$ and $c, B \rightarrow b$ and $c, C \rightarrow b$ and $d, D \rightarrow a$ and d

6. Calculate the focal length of a reading aia_0 person, if the distance of distinct vision is 75 cm

(a) 75.2 cm

(b) 25.6 cm

(c) 100.4 cm

Column II

Convex mirror

Concave mirror

Real image

Virtual image

(d) 37.5 cm

7. A person wants a real image of his own, 3 times enlarged. Where should he stand in front of a concave mirror of radius of curvature of 30 cm?

(a) 90 cm

(b) 10 cm

(c) 20 cm

(d) 30 cm

8. The magnifying power of a convex lens of focal length 10 cm, when the image is formed at the near point is

(a) (

(b) 5.5

(c) 4

(d) 3.5

9. The velocity of image when object and mirror both are moving towards each other with velocities 4 ms⁻¹ and 5 ms⁻¹ respectively, is

(a) -14 ms^{-1}

(b) 15 ms^{-1}

(c) -9 ms^{-1}

(d) 14 ms^{-1}

10.	A plano-convex lens fits exactly into a plano-concave lens. Their plane surfaces are parallel to each other. If
	lenses are made of different materials of refractive indices μ_1 and μ_2 and R is the radius of curvature of the curved
	surface of the lenses, then the focal length of the combination is

(a)
$$\frac{R}{2(\mu_1 + \mu_2)}$$

$$\frac{R}{2(\mu_1 + \mu_2)}$$
 (b) $\frac{R}{2(\mu_1 - \mu_2)}$ (c) $\frac{R}{(\mu_1 - \mu_2)}$ (d)

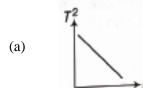
$$(c) \qquad \frac{R}{(\mu_1-\mu_2)}$$

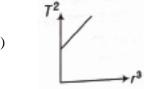
$$(d) \qquad \frac{2R}{(\mu_2 - \mu_1)}$$

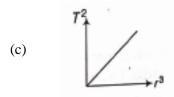
- 11. For a normal eye, the cornea of eye provides a converging power of 40 D and the least converging power of the eye lens behind the cornea is 20 D. Using this information, the distance between the retina and the cornea-eye lens can be estimated to be
 - (a) 5 cm
- (b) 2.5 cm
- (c) 1.67 cm
- (d) 1.5 cm
- When an object is placed at 40 cm from a diverging lens, its virtual image is formed 20 cm from the lens. The 12. focal length and power of lens are
 - F = -20 cm, P = -5D(a)

F = -40 cm, P = -5 D

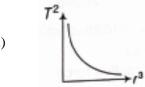
F = -40 cm, P = -2.5 D(c)


- (d) F = -20 cm, P = -2.5 D
- A concave mirror of focal length f₁ is placed at a distance d from a convex lens of focal length f₂. A beam of light 13. coming from infinity and falling on this convex lens concave mirror combination returns to infinity. The distance d must be equal
 - $f_1 + f_2$ (a)
- (b) $-f_1 + f_2$
- (c) $2f_1 + f_2$
- (d) $-2f_1+f_2$
- If the image formed by a convex mirror of focal length 30 cm is a quarter of the size of the object, then the 14. distance of the object from the mirror will be
 - (a) 30 cm
- (b) 60 cm
- (c) 90 cm
- (d) 120 cm
- 15. If the radius of earth's orbit is made 1/4th, then duration of an year will become
 - 8 times (a)
- (b) 14 times
- 1/8 times (c)
- (d) 1/4 times


- 16. The period of revolution of planet A around the sun is 8 times that of B. The distance of A from the sun is how many times greater than that of B from the sun?
 - 2 (a)
- 3 (b)


(c) 4

- (d) 5
- 17. Which of the following graphs between the square of the time period and cube of the distance of the planet from the sun is correct?



- 18. A comet of mass m moves in a highly elliptical orbit around the sun of mass M. The maximum and minimum distances of the comet from the centre of the sun are r, and r₂, respectively. The magnitude of angular momentum of the comet with respect to the centre of sun is

- $\left\lceil \frac{GMr_1}{(r_1 + r_2)} \right\rceil^{1/2} \qquad \text{(b)} \qquad \left\lceil \frac{GMmr_1}{(r_1 + r_2)} \right\rceil^{1/2} \qquad \text{(c)} \qquad \left\lceil \frac{2Gm^2r_1r_2}{(r_1 + r_2)} \right\rceil^{1/2} \qquad \text{(d)} \qquad \left[\frac{2GMm^2r_1r_2}{(r_1 + r_2)} \right]^{1/2}$
- 19. In vertical circular motion, the ratio of kinetic energy of a particle at highest point to that at lowest point is
 - 5 (a)
- (b) 2

- 0.5 (c)
- (d) 0.2

20.	accele		respec	ped and then released t to earth is 0.0027 n 0 ms ⁻²)				·			
	(a)	$0.0027~{\rm ms}^{-2}$	(b)	5.0 ms^{-2}	(c)	6.4 ms^{-2}	(d)	$10~\mathrm{ms}^{-2}$			
21.		cceleration due to gr ponding height on th		a planet is 1.96 ms ⁻² t will be	. If it is	safe to jump from a h	neight of	3 m on the ear	th, the		
	(a)	3 m	(b)	6 m	(c)	9 m	(d)	15 m			
22.	The m	ass of the moon is 1	/8 of the	e earth but the gravita	tional pu	all is 1/6 of the earth.	It is due	to the fact that			
	(a)	moon is the satellite of the earth									
	(b)	the radius of the earth is 8/6 of the moon radius									
	(c)	the radius of the earth is $\sqrt{8/6}$ of the moon radius									
	(d)	the radius of the n	noon is 6	5/8 of the earth radius							
23.	revolu	• •	_	around a very mass				•			
	(a)	R^3	(b)	$R^{5/2}$	(c)	$R^{3/2}$	(d)	R ^{7/2}			
24.	becaus	C	r mass b	made larger, its force out would decrease be predominate?		3					
	(a)	Increase in mass			(b)	Increase in radius					
	(c)	Both effect the att	raction o	equally	(d)	None of the above					

- 25. The orbital velocity of an artificial satellite in a circular orbit just above the earth's surface is v. For a satellite orbiting at an altitude of half of the earth's radius, the orbital velocity is
 - (a) $\frac{3}{2}$ v
- (b) $\sqrt{\frac{3}{2}}$ v
- (c) $\sqrt{\frac{2}{3}}$ v
- (d) $\frac{2}{3}$

- 26. If total energy of satellite is E, what is its potential energy?
 - (a) 2E
- (b) −2E
- (c) E

- (d) –E
- 27. A synchronous relay satellite reflects TV signals and transmits TV programme from one part of the world to Mother because its
 - (a) period of revolution is greater than the period of rotation of the earth about its axis
 - (b) period of revolution is less than the period of rotation of the earth about its axis
 - (c) period of revolution is equal to the period of rotation of the earth about its axis
 - (d) mass is less than the mass of earth
- 28. By what per cent the energy of a satellite has to be increased to shift it from an orbit of radius r to $\frac{3}{2}$ r?
 - (a) 15%
- (b) 20.3%
- (c) 66.7%
- (d) 33.33%
- 29. The total energy of an artificial satellite of mass m revolving in a circular orbit around the earth with a speedy is
 - (a) $\frac{1}{2}$ mv²
- (b) $\frac{1}{4}$ mv²
- (c) $-\frac{1}{4} \text{ mv}^2$
- $(d) \qquad -\frac{1}{2} \, \text{mv}^2$
- 30. The field in which artificial satellites are useful for practical purpose is
 - (a) telecommunication

(b) geophysics

(c) meteorology

(d) All of these

31.	A launching vehicle carrying an artificial satellite of mass m is set for launch on the surface of the earth of mass
	M and radius R. If the satellite is intended to move in a circular orbit of radius 7R, the minimum energy required
	to be spent by the launching vehicle on the satellite is [Gravitational constant = G]

(a)	GMı
(a)	R

(b)
$$-\frac{13GMn}{14R}$$

(c)
$$\frac{\text{GMm}}{7\text{R}}$$

$$(d) \qquad \frac{GMm}{14R}$$

- A body is orbiting around the earth at a mean radius which is two times as greater as the parking orbit of a 32. satellite the period of the body is
 - (a) 4 days
- (b) 16 days
- $2\sqrt{2}$ days (c)
- (d) 64 days
- The escape velocity from the earth is 11 kms⁻¹. The escape velocity from a planet having twice the radius and the 33. same mean density as the earth would be
 - 5.5 kms^{-1} (a)
- 11 kms^{-1} (b)
- (c) 15.5 kms^{-1}
- (d) 22 kms^{-1}
- The ratio of the radii of the planets P₁ and P₂ is a. The ratio of their acceleration due to gravity is b. The ratio of 34. the escape velocities from them will be
 - (a) ab
- (b)
- $\sqrt{a/b}$ (c)
- (d)
- The mass of the moon is 1/81th of earth's mass and its radius is 1/4th that of the earth. If the escape velocity from 35. the earth's surface is 11.2 kms⁻¹, its value for the moon will be
 - $0.15~\rm km s^{-1}$ (a)
- 5 kms^{-1} (b)
- 2.5 kms^{-1} (c)
- 0.5 kms^{-1} (d)

- In uniform circular motion of a particle 36.
 - (a) velocity is constant but acceleration is variable
- velocity is variable but acceleration is constant (b)
- both speed and acceleration are constants (c)
- (d) speed is constant but acceleration is variable
- 37. The angular velocity of second hand, of a clock is

- $\left(\frac{\pi}{6}\right) \operatorname{rad} s^{-1}$ (b) $\left(\frac{\pi}{60}\right) \operatorname{rad} s^{-1}$ (c) $\left(\frac{\pi}{30}\right) \operatorname{rad} s^{-1}$ (d) $\left(\frac{\pi}{15}\right) \operatorname{rad} s^{-1}$

38.	A car	wheel is rotated to	uniform	angular acceleration	n about its	axis, Initially its an	gular vel	ocity is zero. It rot	ates
	throug	gh an angle θ_{1} in th	ne first 2	s, in the next 2 s, it	rotates thr	ough an additional a	angle θ_2 ,	the ratio of $\frac{\theta_2}{\theta_1}$ is	;
	(a)	1	(b)	2	(c)	3	(d)	5	
39.	The a car?	angular speed of a o	car increa	ases from 600 rpm	to 1200 rp	om in 10 s. What is	the angu	lar acceleration of	: the
	(a)	600 rad s^{-1}	(b)	60 rad s^{-1}	(c)	$60\pi\text{ rad s}^{-1}$	(d)	$2\pi \text{ rad s}^{-1}$:
40.	Veloc	city vector and acce	leration v	vector in a uniform	circular m	otion are related as			
	(a)	both in the same	direction	1	(b)	perpendicular to	each other	ſ	
	(c)	both in opposite	direction		(d)	not related to each	n other		
41.	freque	•	· ·	· ·		at the lower most p		_	•
	(a)	3 N	(b)	5 N	(c)	8 N	(d)	13 N	
42.	In hydrogen atom, the electron is moving round the nucleus with velocity $2.18 \times 10^6 \text{ms}^{-1}$ in an orbit of radius 0.528 A. The acceleration of the electron is								
	(a)	$9\times10^{18}\text{ms}^{-2}$	(b)	$9\times10^{22}~ms^{-2}$	(c)	$9\times 10^{-22}~ms^{-2}$	(d)	$9\times10^{12}\text{ms}^{-2}$	
43.	•	•		e of radius r with a P about A and C is		speed v. C is the cer	ntre of the	e circle and AB is	s the
	(a)	1:1	(b)	1:2	(c)	2:1	(d)	4:1	
44.	A wh	eel rotates with a co	onstant a	ngular velocity of 30	00 rpm. Tl	ne angle through wh	ich the w	heel rotates in 1 s	is
	(a)	π rad	(b)	5π rad	(c)	10π rad	(d)	20π rad	

45.		of mass 1000 k	_			m. If the coe	efficient of frict	tion is 0.64, t	then the
	(a)	$22.4~{\rm ms}^{-1}$	(b)	5.6 ms^{-1}	(c)	11.2 ms ⁻¹	(d)	None of the	ese
46.		coefficient of fric n round a curve o		•		_	imum speed wi	th which car	can be
	(a)	$40~\text{ms}^{-1}$	(b)	$20\;ms^{-1}$	(c)	15 ms ⁻¹	(d)	$10~\text{ms}^{-1}$	
47.		dy moves along ar speed (in rad s	-					What should	d be its
	(a)	5	(b)	10	(c)	0.1	(d)	0.7	
48.		dy is just being r is at the highest p					-	_	hen the
	(a)	2R	(b)	R	(c)	$R\sqrt{2}$	(d)	4R	
49.		lway carriage ha num safe speed a			_			are 1 m apa	rt. The
	(a)	$12~\mathrm{ms}^{-1}$	(b)	18 ms ⁻¹	(c)	22 ms ⁻¹	(d)	$27~\mathrm{rns}^{-1}$	
50.	A particle moves along a circle of radius r with constant tangential acceleration. If the velocity of the particle is vat the end of second revolution, after the revolution has started, then the tangential								
	(a)	$\frac{v^2}{8\pi r}$	(b)	$\frac{v^2}{6\pi r}$	(c)	$\frac{v^2}{4\pi r}$	(d)	$\frac{v^2}{2\pi r}$	

Date: 06.11.2022

ABHIMANYU BATCH CHEMISTRY: REVISION TEST-1 (SET A)

Topic: Mole Concept + Redox Reaction + Periodic Properties + S Block + Hydrogen

51.	Element with atomic number [Z=111] is named in the honour of										
	(a)	Hassium	(b)	Sea Borgium	(c)	Meitnerium	(d)	Rontgenium			
52.	The number of neutrons in a drop of water (20 drops= 1 mL) at 4°C										
	(a)	6.023×10^{22}	(b)	1.338×10^{22}	(c)	6.023×10^{20}	(d)	7.338×10^{22}			
53.	The number of significant figures in 6.0023 are										
	(a)	5	(b)	4	(c)	3	(d)	1			
54.	Which of the following sequence regarding the first ionization potential of coinage metal is correct?										
	(a)	Cu > Ag > Au	(b)	Cu < Ag < Au	(c)	Cu > Ag < Au	(d)	Ag > Cu < Au			
55.	$MnO_4^- + SO_3^{-2} + H^+ \rightarrow Mn^{+2} + SO_4^{-2}$. The number of H ⁺ ions involved is										
	(a)	2	(b)	6	(c)	8	(d)	16			
56.	How many ml of 1 (M) H ₂ SO ₄ is required to neutralise 10 ml of 1 (M) NaOH solution?										
	(a)	2.5	(b)	5.0	(c)	10.0	(d)	20.0			
57.	Oxida	ation number of Cl i	n NOCl	O ₄ is							
	(a)	+7	(b)	-7	(c)	+5	(d)	-5			
58.	Two	oxides of a metal c	ontain 5	0% and 40% metal	M respect	tively. If the formula	a of the f	first oxide is MO ₂ , the			
	form	ıla of the second ox	ide will	be							
	(a)	MO_2	(b)	MO_3	(c)	M_2O	(d)	M_2O_5			
59.	The a	amount of energy re	eleased v	when 10 ⁶ atoms of i	odine in v	vapour state are cor	overted to	o ions is $4.9 \times 10^{-13} \text{ J}.$			
	What	is the electron affir	ity of io	dine in eV/atom?							
	(a)	2.0	(b)	2.5	(c)	3.06	(d)	2.75			

60.	Crysta	als of which pair are	isomor	phous							
	(a)	ZnSO ₄ , SnSO ₄	(b)	MgSO ₄ , CaSO ₄	(c)	ZnSO ₄ , MgSO ₄	(d)	PbSO ₄ , NiSO ₄			
61.	Diago	onal relationship is s	hown by	7							
	(a)	B - S	(b)	Li - Mg	(c)	Mg - Ca	(d)	S - Se			
62.	0.56 g	gm of gas occupies 2	280 cm ³	at NTP, then its mole	ecular ma	ass is					
	(a)	4.8	(b)	44.8	(c)	2	(d)	22.4			
63.	Total	number of groups in	n Mende	leef's table							
	(a)	18	(b)	9	(c)	7	(d)	10			
64.	1.25 g	g of a solid dibasic a	acid is co	ompletely neutralised	l by 25 n	nl of 0.25 molar Ba(C	OH) ₂ sol	ution. Molecular mass			
	of the	acid is									
	(a)	100	(b)	150	(c)	120	(d)	200			
65.	The following data are available.										
	(i)	% of Mg in Mgo	and in M	$IgCl_2$	(ii)	% of C in CO & C	O_2				
	(iii)	% of Cr in K ₂ Cr ₂	O ₇ and I	ζ_2 CrO ₄	(iv)	% of Cu isotopes in	n Cu me	tal			
	The la	w of multiple prope	ortions n	nay be illustrated by	data.						
	(a)	i & ii	(b)	only ii	(c)	i, ii & iii	(d)	only iii			
66.	In the	reaction,									
	HAsC	$O_2 + Sn^{2+} \rightarrow As + Sn^{2+}$	$n^{4+} + H_2 O$	O oxidizing agent is							
	(a)	Sn^{2+}	(b)	Sn^{4+}	(c)	As	(d)	HAsO ₂			
67.	The fi	irst and second ioni	sation er	nthalpies of a metal a	re 496 a	nd 4560 kJ mol ⁻¹ , res	pectivel	y. Hoe many moles of			
	HCl a	nd H ₂ SO ₄ , respectiv	ely, wil	l be needed to react c	ompletel	y with 1 mole of the	metal hy	droxide?			
	(a)	1 and 0.5	(b)	2 and 0.5	(c)	1 and 1	(d)	1 and 2			
68.	Which	n of the following io	ons has t	he smallest radius ?							
	(a)	$\mathrm{Be^{2+}}$	(b)	Li ⁺	(c)	O^{2-}	(d)	F^{-}			

69.		•		ls of Cu ²⁺ /Cu and C	u ²⁺ /Cu ⁺	are 0.337 and 0.153	V respo	ectively. The standar	·C		
	electr	ode potentials of Cu	ı+/Cu ha	alf cell is							
	(a)	0.521 V	(b)	0.184 V	(c)	0.490 V	(d)	0.827 V			
70.	2.76 g of silver carbonate on being strongly heated yield a residue weighing:										
	(a)	2.64 g	(b)	2.48 g	(c)	2.16 g	(d)	2.32 g			
71.	The s	stable oxidation state	of Tha	llium, a IIIA group el	ement is						
	(a)	+1	(b)	+3	(c)	-3	(d)	+5			
72.	The a	The acidic, basic and amphoteric oxides, respectively, are:									
	(a)	MgO, Cl ₂ O, Al ₂ O) ₃		(b)	Cl_2O , CaO , P_4O_{10}					
	(c)	Na ₂ O, SO ₃ , Al ₂ O	3		(d)	N ₂ O ₃ , Li ₂ O, Al ₂ O ₃	3				
73.	Rearr	range the following	(I to IV) in the order of incr	easing r	nasses and choose th	e correct	t answer from (1), (2).		
	(3) ar	nd (4) (Atomic mass	: N = 14	4, O = 16, Cu = 63).							
	I.	1 molecule of ox	ygen		II.	1 atom of nitroger	ı				
	III.	$1 \times 10^{-10} \text{g}$ molecular weight of oxygen				1×10^{-10} g atomic	weight o	of copper			
	(a)	II < I < III < IV	(b)	IV < III < II < I	(c)	II < III < I < IV	(d)	III < IV < I < II			
74.	One mole of acidified K ₂ Cr ₂ O ₇ on reaction with excess KI will liberatemole (s) of I ₂										
	(a)	6	(b)	1	(c)	7	(d)	3			
75.	H ₂ ev	olved at STP on cor	nplete r	eaction of 27 g of Alu	ıminium	with excess of aqueo	ous NaO	H would be			
	(a)	22.4	(b)	44.8	(c)	67.2	(d)	33.6 litres			
76.	The n	number of moles of s	sodium	oxide in 620 g of it is							
	(a)	1 mol	(b)	10 moles	(c)	18 moles	(d)	100 moles			
77.	The u	ultimate products of	oxidatio	on of most of hydroge	n and ca	rbon in food stuffs a	re				
	(a)	H ₂ O ₂ and CO			(b)	CH₃OH and CH₃C	СООН				
	(c)	H ₂ O and CO ₂			(d)	H ₂ and C					

78.	Give the name of the inert gas atom in which the total number of d-electrons is equal to the difference in numbers									
	of tot	al p and s-electrons								
	(a)	Не	(b)	Ne	(c)	Ar	(d)	Kr		
79.	How many electrons and protons are present in the balanced half reaction $NO_2^- \rightarrow NO$									
	(a)	1, 2	(b)	1, 1	(c)	2, 2	(d)	0, 1		
80.	An atom of element has 2K, 8L and 3M electrons. Then that element is placed in									
	(a)	I A group	(b)	II A group	(c)	III A group	(d)	IV A group		
81.	The pair of compounds which cannot exist together in solution is:									
	(a)	a) NaHCO ₃ and NaOH				Na ₂ CO ₃ and NaHC	O_3			
	(c)	Na ₂ CO ₃ and NaOl	Н		(d)	NaHCO ₃ and NaCl				
82.	Moist	t hydrogen cannot be	dried o	ver concentrated H ₂ S	O4 becai	use:				
	(a)	it can catch fire			(b)	it is reduced by H ₂ S	SO_4			
	(c)	a part of it is oxid	ized by	H_2SO_4	(d)	it decomposes H ₂ S	O_4			
83.	The most dangerous method of preparing hydrogen would be by the action of HCl and									
	(a)	Zn	(b)	Fe	(c)	K	(d)	Al		
84.	Hydrogen gas is not liberated when the following metals added to dil. HCl:									
	(a)	Mg	(b)	Sn	(c)	Ag	(d)	Zn		
85.	Hydro	ogen after losing one	electro	n forms H ⁺ resembles	in this p	property with:				
	(a)	alkali metals			(b)	halogens				
	(c)	alkaline earths me	etals		(d)	transitional elemen	ts			
86.	Heav	y water reacts with A	l_4C_3 to	form:						
	(a)	CD ₄ and Al(OH) ₃	(b)	CH ₄ and Al(OD) ₃	(c)	CD ₄ and Al(OD) ₃	(d)	None of these		
87.	Amoi	ng the following, whi	ich has	minimum solubility ir	n water?					
	(a)	KOH	(b)	CsOH	(c)	LiOH	(d)	RhOH		

88.	In which of the follow	ng reaction, H ₂ 0	O2 is acting as a	reducing agent?
-----	------------------------	-------------------------------	-------------------	-----------------

(a)
$$SO_2 + H_2O_2 \longrightarrow H_2SO_4$$

(b)
$$2KI + H_2O_2 \longrightarrow 2KOH + I_2$$

(c)
$$Ag_2O + H_2O_2 \longrightarrow 2Ag + H_2O + O_2$$

(d)
$$PbS + 4H_2O_2 \longrightarrow PbSO_4 + 4H_2O$$

89. Which can adsorb large volumes of hydrogen gas?

(a)
$$75\%$$
 ortho- $H_2 + 25\%$ para- H_2

(b)
$$25\%$$
 ortho- $H_2 + 75\%$ para- H_2

(c)
$$50\%$$
 ortho- $H_2 + 50\%$ para- H_2

(d) 99% para-
$$H_2 + 1\%$$
 ortho- H_2

91. The hydrogen at the moment of its formation is called:

92. Sodium forms Na⁺ and not Na²⁺ because:

- (b) first ionization potential is small and the difference in first and second ionization potentials is large
- (c) radius of Na²⁺ is much smaller than of Na⁺
- (d) None of these

93. Most reactive meal among the following is:

94. Acidified solution of chromic acid on treatment with H₂O₂ yields:

(a)
$$CrO_3 + H_2O + O_2$$

(b)
$$Cr_2O_2 + H_2O + O_2$$

(c)
$$CrO_5 + H_2O + K_2SO_4$$

(d)
$$H_2Cr_2O_7 + H_2O + O_2$$

95. Which is more basic in character?

96.	Which of	of the following cor	npounds	on reaction with Na	OH and I	H ₂ O ₂ gives yellow co	lour?			
	(a)	$Zn(OH)_2$	(b)	Cr(OH) ₃	(c)	Al(OH) ₃	(d)	None of these		
97.	Which a	alkaline earth metal	does no	t impact the flame co	lour?					
	(a)	Sr	(b)	Be	(c)	Ra	(d)	Ca		
98.	Which i	is used to remove N	from a	ir?						
	(a)	Mg	(b)	P	(c)	H_2SO_4	(d)	$CaCl_2$		
99.	Sodium	burns in dry air to	give:							
	(a)	Na ₂ O	(b)	Na_2O_2	(c)	NaO_2	(d)	Na_3N		
100.	0. Which metal does not form ionic hydride?									
	(a)	Ba	(b)	Mg	(c)	Ca	(d)	Sr		

Max. Marks: 100 Date: 06.11.2022

ABHIMANYU BATCH PHYSICS: REVISION TEST-1 (SET A)

Topics: Ray Optics, Circular Motion and Gravitation

Answer Key

1.	(c)	2.	(d)	3.	(c)	4.	(b)	5.	(d)
6.	(d)	7.	(c)	8.	(d)	9.	(a)	10.	(c)
11.	(c)	12.	(c)	13.	(c)	14.	(c)	15.	(c)
16.	(b)	17.	(c)	18.	(d)	15.	(d)	20.	(c)
21.	(d)	22.	(c)	23.	(b)	24.	(a)	25.	(c)
26.	(a)	27.	(c)	28.	(d)	29.	(d)	30.	(d)
31.	(b)	32.	(c)	33.	(d)	34.	(b)	35.	(c)
36.	(d)	37.	(c)	38.	(c)	39.	(d)	40.	(b)
41.	(d)	42.	(b)	43.	(b)	44.	(c)	45.	(c)
46.	(d)	47.	(d)	48.	(a)	49.	(c)	50.	(a)

Date: 06.11.2022

ABHIMANYU BATCH CHEMISTRY: REVISION TEST-1 (SET A) ANSWER KEY

Topic: Mole Concept + Redox Reaction + Periodic Properties + S Block + Hydrogen

51.	(d)	52.	(b)	53.	(a)	54.	(c)	55.	(b)
56.	(b)	57.	(a)	58.	(b)	59.	(c)	60.	(c)
61.	(b)	62.	(b)	63.	(b)	64.	(d)	65.	(b)
66.	(d)	67.	(a)	68.	(a)	69.	(a)	70.	(c)
71.	(a)	72.	(d)	73.	(a)	74.	(d)	75.	(d)
76.	(b)	77.	(c)	78.	(d)	79.	(a)	80.	(c)
81.	(a)	82.	(c)	83.	(c)	84.	(c)	85.	(a)
86.	(c)	87.	(c)	88.	(c)	89.	(a)	90.	(a)
91.	(d)	92.	(b)	93.	(a)	94.	(c)	95.	(a)
96.	(b)	97.	(b)	98.	(a)	99.	(b)	100.	(b)